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Short-time domain-wall dynamics in the random-field Ising model with a driving field
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With Monte Carlo methods, we investigate the relaxation dynamics of a domain wall in the two-dimensional
random-field Ising model with a driving field. The short-time dynamic behavior at the depinning transition is
carefully examined, and the roughening process of the domain wall is observed. Based on the short-time
dynamic scaling form, we accurately determine the transition field, static and dynamic exponents, and local and
global roughness exponents. In contrast to the usual assumption, the results indicate that the domain interface
does not belong to the universality class of the Edwards-Wilkinson equation. In particular, due to the dynamic
effect of overhangs, the domain interface exhibits intrinsic anomalous scaling and spatial multiscaling behav-

iors, compatible with the experiments.
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I. INTRODUCTION

In recent years the dynamics of elastic systems in disor-
dered media has been the focus of theoretical and experimen-
tal studies. Examples are charge-density waves, vortex lat-
tices, domain walls in ferromagnetic or ferroelectric
materials, contact lines, and fluid invasion in porous
media.'=> A crucial feature of these systems is that the driven
interface in disordered media displays a depinning phase
transition at zero temperature.®~'® In particular, the magnetic
domain-wall dynamics is an important topic in magnetic de-
vices, nanomaterials, thin films, and semiconductors.>-!7-22
The depinning transition of a disordered magnetic system
driven by a constant field H is of second order, and its or-
dered parameter is the interface velocity v. If a time-
dependent field H(¢) is applied and/or a nonzero temperature
is introduced, the domain wall exhibits different states of
motion and dynamic phase transitions,'®2* and essential
parts of the phenomena are also dominated by the depinning
transition.

Up to date, theoretical approaches to the domain-wall dy-
namics in ferromagnetic and ferroelectric materials are typi-
cally based on the Edwards-Wilkinson equation with
quenched disorder (QEW).!2-16.23-25 The QEW equation is a
phenomenological model, and detailed microscopic struc-
tures and interactions of the materials are not concerned. The
domain wall in a two-dimensional (2D) system is effectively
described by a single-valued elastic string. At the depinning
transition, one then expects a roughness exponent =1,'126
and this seems confirmed in numerical measurements of the
local roughness exponent {j,,. from local observables such as
the height correlation function or local width function.?’-?8
On the other hand, the global roughness exponent { extracted
from the global width function is reported to be around 1.25
in numerical simulations.'>'%?° Recent renormalization-
group calculations up to the two-loop order also yields
{=1.43."" However, a roughness exponent {>1 indicates
that the elastic string is no more single-valued and one
dimensional (1D).° This self-inconsistence is puzzling in
the QEW equation. Furthermore, most experiments report
(e < 1.17:1820

To further understand the domain-wall motion from a
more fundamental level, we should build lattice models
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based on microscopic structures and interactions of the ma-
terials. It may avoid the self-inconsistence, reveal new uni-
versality classes, and allow a closer comparison with experi-
ments. The random-field Ising model with a driving field
(DRFIM) is a candidate. The scaling behavior of its station-
ary state has been simulated at zero or low temperature, and
the static critical exponents appear not too different from
those of the QEW equation.”#10:3%31 For a long time one
expects that the QEW equation and DRFIM model belong to
the same universality class. Due to severe critical slowing
down, however, accurate determination of the transition field
H, and critical exponents is very difficult for the DRFIM
model. Especially, the roughening dynamics of the domain
wall is rarely touched, and the dynamic exponent z and
roughness exponents ¢ and {;,. have not been obtained. It
remains a challenge whether the QEW equation and DRFIM
model are really in the same universality class, especially
one or both of them correctly describe the domain-wall dy-
namics in experiments.

In recent years much progress has been achieved in criti-
cal dynamics far from equilibrium.>-3 Although the spatial
correlation length is still short in the beginning of the time
evolution, a dynamic scaling form is induced by the diver-
gent correlating time. Based on the short-time dynamic scal-
ing form, new methods for the determination of both dy-
namic and static critical exponents have been developed.3#3¢
Since the measurements are carried out in the short-time re-
gime, one does not suffer from critical slowing down. Recent
activities include various applications and developments
such as theoretical and numerical studies of the Josephson-
junction arrays and aging phenomena.’’~** Very recently, a
kind of domain-wall roughening process at order-disorder
phase transitions has been revealed.*>* The short-time be-
havior of the domain-wall relaxation at the depinning transi-
tion is also noted in simulations and experiments.'4*’ How-
ever, the short-time dynamic method has not been explored
to systematically tackle the dynamic phase transitions of the
domain-wall motion at zero or low temperatures such as the
depinning transition and creep-relaxation transition.?0-21-23-24

The purpose of this paper is to develop a short-time dy-
namic approach to the domain-wall dynamics at zero tem-
perature, and identify the universality class of the 2D
DRFIM model at the depinning transition, in comparison
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FIG. 1. (a) The initial state with a perfect domain wall, and the time evolution of the spin configuration. (b) The time evolution of the

domain interface with A=0 and A=1.5.

with those of the QEW equation and experiments. In Sec. II,
the model and scaling analysis are described, and in Sec. III,
the numerical results are presented. Finally, Sec. IV includes
the conclusions.

II. MODEL AND SCALING ANALYSIS
A. Model
The DRFIM model is defined by the Hamiltonian

H=-J2SS;- > (h+H)S;.
(i) i

(1)

Here S;= =1 is a spin at site i of a square lattice, the random
field h; is uniformly distributed within an interval [-A,A],
and H is a homogeneous field. Following Ref. 7, we fix A
=1.5 J and set J=1. A Gaussian distribution of the random
field h; leads to similar results, but the fluctuations induced
by the disorder are stronger and numerical simulations are
technically more complicated. Therefore, we concentrate on
the uniform distribution of #4; in this paper. Our simulations
are performed at zero temperature with lattice sizes L=128,
256, 512, and 1024 up to f,,,=2048, with total samples
10,000, 40,000, 50,000 and 16,000, respectively. Main re-
sults are presented with L=512, and simulations of different
L confirm that finite-size effects are already negligibly small.
Errors are estimated by dividing the samples into two or
three subgroups.

The initial state is a semiordered state with a perfect do-
main wall in the y direction. Antiperiodic and periodic
boundary conditions are used in x and y directions, respec-
tively. To eliminate the pinning effect irrelevant for disorder,
we rotate the square lattice such that the initial domain wall
orients in the (11) direction of the square lattice,”%10 as
shown in the left sector of Fig. 1(a). With the initial state, we
randomly select a spin, and flip it if the total energy de-
creases after flipping. A Monte Carlo time step is defined by
L? single-spin flips. As time evolves, the domain wall moves
and roughens while the bulk remains unchanged. Therefore,

we call it a domain interface. We should emphasize that for
A=1, overhangs and islands will be created, but only by the
domain wall. It still makes sense to define the interface. In
Fig. 1(b), the time evolution of the spin configurations is
displayed for A=0 and A=1. The fine structure of the spin
configuration of A=1 is shown in the right sector of Fig.
1(a). For a fixed A=1 and at the depinning transition field
H_, the interface width continuously increases with time and
finally diverges if the lattice size is infinite. This is a kind of
roughening transition. For A=0, the domain interface also
grows continuously, but it belongs to the universality class of
H> HC.13,14

Due to the existence of the overhangs and islands, there
may be different ways to define the domain interface. We
adopt the one commonly used in the literature.”'° Denoting a
spin at site (x,y) by S,,(¢), we first introduce a height func-
tion

W) =73 5,0, 2)

and then define the line magnetization a(r)=h"(¢) and its
second moment 7?(7),

RO @) = (.01, (3)

where (---) includes the statistical average and average over
y. In the height function A(y,) defined in Eq. (2), the con-
tribution of overhangs and islands seems formally sup-
pressed. However, overhangs and islands essentially affect
the dynamic evolution of the spin configuration and do play
essential roles in the interface movement and growth. With
the height function at hand, the average velocity of the inter-
face can be calculated as’

k=1,2,

v(r) = 9@

2 dt “

Here v(7) is the order parameter of the depinning phase tran-
sition. On the other hand, the domain interface itself is rep-
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resented by the height function A(y,). Therefore, the rough-
ness function of the interface is defined as

(1) = () = h(1)?. (5)

A more informative quantity is the height correlation func-
tion

Clr,1) = [h(y + r,0) = h(y,) ), (6)

which describes both the spatial correlation of the height
function and the growth of the interface. To obtain the dy-
namic exponent z independently, we introduce an observable

F(1) =[MP(1) - M(1))/ ™(1). (7)

Here M(r) is the global magnetization and M®)(z) is its sec-
ond moment. In fact, F(¢) is nothing but the ratio of the
planar susceptibility and line susceptibility.

B. Scaling analysis

Since the depinning transition is a second-order phase
transition, the dynamic evolution of the order parameter v(z)
should obey the dynamic scaling theory supported by the
renormalization-group calculations.?>343¢ For a finite lattice
size L, and assuming a nonequilibrium correlation length
&(t) ~ 1'%, scaling arguments lead to a dynamic scaling form
of the order parameter,3>3436

v(t,n,L)=b P u(b7t,bV"r,b7'L). (8)

Here b is an arbitrary rescaling factor, 8 and v are the static
exponents, z is the dynamic exponent, and 7=(H-H,)/H..
Taking b~ &(t) ~ 1'%, the dynamic scaling form can be re-
written as

v(t,7,L) =t P (1, m VL), 9)

In the short-time regime, i.e., the regime with &) ~¢"*<L,
the finite-size effect is negligibly small. Therefore,

o(t, D) = PG(" 7). (10)

At the depinning transition point 7=0, the scaling form leads
to a power law

v(t) ~ 1P, (11)

With Eq. (10), one may locate the critical field H,. by search-
ing for the best power-law behavior of v(z, 7).3*3 To deter-
mine v, one simply derives from Eq. (10)

3. Inv(t,7)| oo~ 1"~ (12)

In general, even at the transition point 7=0, w?(¢) and C(r,?)
do not obey a simple power-law behavior, for the order pa-
rameter is v(z), not h(t). In fact, the interface also roughens
even without disorder. This leads to rather strong corrections
to scaling. To capture the dynamic effects of disorder, we
introduce the pure roughness function

Do’ (1) = 0*(1) - wi(t), (13)

and height correlation function

PHYSICAL REVIEW B 80, 134425 (2009)

DC(r,t) = C(r,t) = Cp(r,1), (14)

where wi(t) and C,(r,t) are the roughness function and
height correlation function for A=0. For a sufficiently large
lattice and at the transition point 7=0, Dw?*(t) and DC(r,t)
should then obey the standard power-law scaling forms®>72°

D’ (1) ~ 1297 (15)
and

DC(D P02 2b0e if r< E(1) <L 16)
’t -~ . .

" P if 0<&)<r

Here &(1)~ 1'%, { is the global roughness exponent, and ¢,
is the local one. In Refs. 45 and 46, the finite-size scaling
behavior of Dw?(¢) has been carefully analyzed and it reveals

Dw’(t) ~ L72. (17)

In the short-time regime, the spatial correlation length of
h(y,r) is small. Therefore, the finite-size dependence of
DC(r,1) is the same as that of Dw?(f),

DC(r,t) ~ L. (18)

Since w*(f) describes the fluctuation in the x direction and
MP(1)—M(r)? includes those in both the x and y directions,
the dynamic scaling behavior of F(f) is3**

F(t) ~ &()/L ~ t"*/L. (19)

Here we need not redefine F(7) with Dw?*(¢), for the correc-
tion to scaling induced by w,z)(t) cancels with that in M®(7)
—-M(1)%.

III. NUMERICAL RESULTS

In Fig. 2(a), the interface velocity v(z,7) is displayed for
different driving field H with L=512. The velocity drops
rapidly down for smaller H, while approaches a constant for
larger H. Searching for the best power-law behavior, one
locates the transition field H,=1.2933(2). This value is much
more precise than H,=1.290(3) obtained from the steady
state.” In Fig. 2(a), one observes that v(f,7) at H,
=1.2933(2) shows an almost-perfect power-law behavior
starting from rather early times and in about three orders of
magnitude. According to Eq. (11), one measures the expo-
nent B/vz=0.217(2) from the slope of the curve at H,. In
Fig. 2(b), the dynamic observable F(¢) defined in Eq. (7) is
plotted at H=H_.=1.2933. A nice power-law behavior is de-
tected for both A=1.5 and A=0. Based on Eq. (19), 1/z
=0.749(5) and 1/z,=0.666(4) are derived from the slopes of
the curves at H=1.2933 for A=1.5 and 0, respectively.

To investigate the possible finite-size effects, v(r) and F(r)
computed with different lattice sizes at H.=1.2933(2) are
also plotted in Fig. 2. The finite-size scaling analysis in Eq.
(9) shows that at the critical point v(f)~t#"f(t/L?). In
the short-time regime, however, the finite-size effect de-
scribed by f(¢/LF) can be easily controlled, i.e., it rapidly
disappears as L increases. This is a merit of the short-time
dynamic approach.3*-364346 Similarly, one may deduce F(r)
~t"2g(¢t/L7)/L3*% To verify the finite-size dependence of
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FIG. 2. (a) Interface velocity v(z, 7) is displayed for different driving fields H on a log-log scale. For clarity, the curves at H.=1.2933 with
different lattice sizes are shifted down. (b) F(z) is plotted for A=1.5 and 0 at H,.=1.2933. To reveal the finite-size dependence in Eq. (19),
F(t) has been rescaled by a factor L. In both (a) and (b), dashed lines show power-law fits.

F(r), F(r) is actually rescaled by a factor L in Fig. 2(b), i.e.,
the y axis is F(¢)L. The finite-size effect described by g(z/L?)
also drops down rapidly. In Fig. 2, one clearly observes that
the curves of L=512 and 1048 overlap at least up to ¢
=1000. We measure B8/vz=0.215(2) and 1/z=0.745(9) from
the curves of L=1048, in good agreement with those from
L=512 within errors.

To calculate the logarithmic derivative d,1nv(z,7)
=du(t,7)/v(t,7), we quadratically interpolate v(¢,7) be-
tween H=1.290 and 1.298 with the data in Fig. 2(a). In Fig.
3(a), d,Inv(t,7) is plotted at H,=1.2933. A power-law be-
havior is observed but with certain corrections to scaling at
the early times. According to Eq. (12), a direct measurement
from the slope of the curve gives 1/vz=0.729. After intro-
ducing a power-law correction to scaling to Eq. (12), i.e.,
d.In v()~t"""*(1+c/1), the fitting to the numerical data ex-

100

tends to early times, and it yields 1/vz=0.735(10).

In Fig. 3(b), the roughness functions w*(f) and wf,(t) for
A=1.5 and 0 at H=1.2933, and the pure roughness function
Dw?(1)=w?(t)— wi(1) are displayed with L=512. The curve
w*(f) with L=1024 is also plotted for comparison. To reveal
the finite-size dependence, the y axis has been rescaled by a
factor L. Obviously Dw?(t) shows a cleaner power-law be-
havior than w?(7) does, due to the subtraction of wi(z). The
slope of the curve Dw?(¢) is 1.701(6). To further refine this
result, we consider a power-law correction to Eq. (16), i.e.,
Dw*(t) ~1?Y*(1+c/t), and it leads to 2¢/z=1.717(7). In a
similar way we derive 2¢,/z,=0.649(4) from w;(7).

In Fig. 4(a), the pure height correlation function DC(r, 1)
is displayed for A=1.5 at H.. For a large r>&(1), e.g., r
=256, one extracts the exponent 2{/z=1.701(8) by Eq. (16),
consistent with that from Fig. 3(b). For a small r<<&(),
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FIG. 3. (a) The logarithmic derivative of v(¢,7) is displayed for A=1.5 at H.=1.2933. The dashed line represents a power-law fit. (b)
Roughness functions w?(r) and w,z,(z) for A=1.5 and 0 at H.=1.2933 are plotted. Squares represent the pure roughness function Dw?(z). To
show the finite-size dependence in Eq. (17), the y axis has been rescaled by a factor L. In both (a) and (b), solid lines show power-law fits
with corrections and the corrections refine the exponents by about one percent.
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FIG. 4. (a) The time evolution of the pure height correlation function DC(r,t) is displayed for different r. (b) DC(r,1) is plotted as a
function of r at different ¢. In both (a) and (b), dashed lines represent power-law fits and solid lines show power-law fits with corrections. To
reveal the finite-size dependence in Eq. (18), DC(r,?) has been rescaled by a factor L.

DC(r,t) should be independent of ¢ for a normal interface
with {={,,, according to Eq. (16). But DC(r,t) of r=2 in
Fig. 4(a) clearly increases with . A perfect power-law behav-
ior is observed with an exponent 2({-{,.)/z=0.597(4).
Without subtracting C,(r,f), one needs simulations up to
longer times to expose the scaling behavior of C(r,f). Fi-
nally, some curves of L=1048 are also shown in Fig. 4(a).
The resulting exponents are the same as those from L=512
within errors. To confirm the finite-size behavior in Eq. (18),
DC(r,1) is actually rescaled by a factor L? in Fig. 4(a).

From the measurements of B/vz, 1/vz, 1/z, 2{/z, and
2({-¢,e)/ z, we calculate the critical exponents S=0.295(3),
v=1.02(2), z=1.33(1), {=1.14(1), and {;,.=0.735(8) for the
depinning transition. The local roughness exponent (.
=0.735(8) can be further confirmed by the scaling behavior
DC(r,t) ~ r*%oc for r<&t) in Eq. (16), but this regime is
narrow. In Fig. 4(b), DC(r,1) is plotted as a function of r.
In the regime 4 =r=40, one indeed obtains {;,.=0.725 from
the slope of the curve. For larger r, however, there emerge
strong corrections to scaling. An extended scaling form
could lead to a better fitting to the numerical data and yields
L10e=0.735(15).527

All the measurements of the critical exponents are sum-
marized in Table I, in comparison with those in the literature
and for the QEW equation. Our transition field H, and static
exponents 3 and v of the DRFIM model significantly refine
those in the literature.”-3%3! For the first time, we obtain the
dynamic exponent z and roughness exponents ¢ and ;.. For
the QEW equation and its variants, there have been various
measurements of the critical exponents. We list only those in
the recent decade and clearly for the QEW equation. In Ref.
9, for example, it is reported =~ 1.17, but a nonlocal Monte
Carlo algorithm has been applied. Other examples are {
=1.15 for a self-organized growth model*’ and for a discrete
string.’® These variants might not be in the universality class
of the QEW equation. For the QEW equation, theoretically
one may expect {;,.=1, but numerically it is difficult to ex-
tract it from DC(r, ) ~ r?%oc in Eq. (16), and one should con-
sider corrections to scaling.®?’ In Ref. 28, the correction to
scaling has not been taken into account, thus {;,.=0.92 is
smaller. Our analysis in this paper shows that it is more
accurate to measure {;,, from DC(r, ) ~ ?¢=40c)% in Eq. (16).
After a careful survey of the literature, we believe that real

TABLE I. The depinning transition field and critical exponents obtained with the short-time dynamic approach are compared with those
in the literature and for the QEW equation. The lower sector is for the DRFIM model with A=0 and QEW equation with H> H_. All results

are from numerical simulations.

QEW DRFIM This work
v(1) H, 1.290(3) (Ref. 7) 1.2933(2)
B 0.33(2) (Ref. 13); 0.33 (Ref. 14) 0.35(4) (Ref. 7); 0.31(8) (Ref. 30) 0.295(3)
v 1.29(5) (Ref. 13); 1.33 (Ref. 14); 1.33(1) (Ref. 48) 1.00(5) (Ref. 7); 1.33 (Ref. 31) 1.02(2)
z 1.5 (Ref. 14); 1.53 (Ref. 28) 1.33(1)
(1) I4 1.26(1) (Refs. 12, 13, and 15); 1.25 (Ref. 14); 1.24 (Ref. 28) 1.14(1)
C(r,1) 14 1.23(1) (Ref. 29); 1.25 (Ref. 28) 1.13(1)
Cioe 0.98 (Ref. 27); 0.92 (Ref. 28) 0.735(8)
H>H, Zp 1.5 (Ref. 14) 1.50(1)
& 0.5 (Ref. 13) 0.49(1)
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critical exponents of the QEW equation should be close to
those summarized in Table 1.

Finally we should mention that the depinning transition
could be relevant for the percolation of the geometric clus-
ters in the 2D DRFIM model.’"3? Deeper understanding of
this kind, however, needs further investigations.

IV. CONCLUSIONS

To summarize, we have developed a short-time dynamic
approach to the domain-wall dynamics of the DRFIM model
at the depinning transition. The method does not suffer from
critical slowing down, and it can be generally applied to
different dynamic phase transitions of the domain-wall mo-
tion. With our accurate measurements of all critical expo-
nents, we are now able to compare the DRFIM model with
the QEW equation. First, the exponents 3, z, and { of the
DRFIM model differ from those of the QEW equation by
about 10 percent, and especially the difference in v and ¢,
between two models reaches nearly 30 percent. These devia-
tions could not be ruled out by statistical errors. Second, the
DRFIM model belongs to a universality class with intrinsic
anomalous scaling and spatial multiscaling, i.e., {>1 and
{1, <1, while the QEW equation is with super-rough scaling
and spatial single scaling, i.e., {>1 and {;,.=1.2"?"3 These

PHYSICAL REVIEW B 80, 134425 (2009)

results indicate that the DRFIM model and QEW equation
are not in a same universality class.

In the DRFIM model, overhangs and islands naturally de-
velop, thus the domain wall is not single-valued and one
dimensional. Therefore, there exists no self-inconsistence. In
the QEW equation, even if overhangs and islands might be
created in peculiar ways, the growth dynamics should be
different from that of the DRFIM model. To show the impor-
tance of overhangs and islands, we perform simulations of
the DRFIM model with A=0 at H=1.2933. As shown in
Table I, the exponents z;, and ;, are the same as those of the
QEW equation with H> H ., since overhangs and islands are
suppressed in both models.

Experimental measurements of the roughness exponents
of the domain interface at zero temperature do not exist. For
T>0 and 0<H<H,, it is reported that ,.=0.7(1) and
0.69(7) in the experiments with ultrathin Pt/Co/Pt films,'7-%
and {,.=0.78(1) with Co,gPt;, alloy films.'"® Our numerical
value ;,.,=0.735(8) is compatible with these experimental
results.
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